

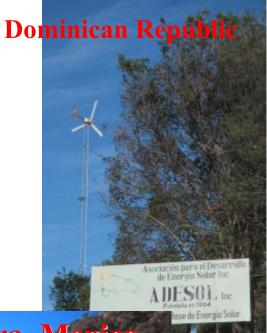
SUSTAINABLE WATER DEVELOPMENT WITH RENEWABLES

Village Power 2000

Robert Foster
Southwest Technology Development Institute
College of Engineering
New Mexico State University

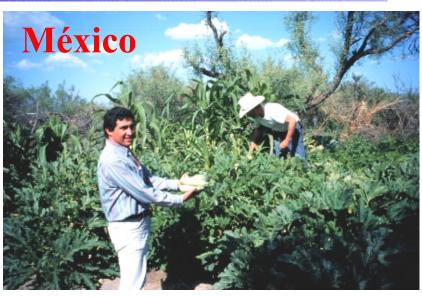
http://www.nmsu.edu/~tdi


Requirements for Successful Renewables Development


- Sierra Tarahumara, Mexico Guatemala
- Strategic Planning
- Capacity Building
 - Local Training
 - Long-Term Technical Support
- Cultural Acceptance
 - Local Buy-In
 - Grassroots Approach
 - Solid Partnerships
- Sustainable Markets
 - Mainstream Industry
 - Proven Technologies
 - Safe & Quality Installations
 - Financing
- Evaluation
 - Long-Term Monitoring
 - Evaluate Results
 - Conduct Follow-up

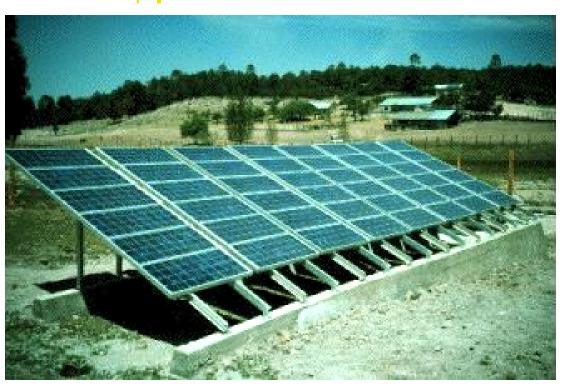
Water Pumping

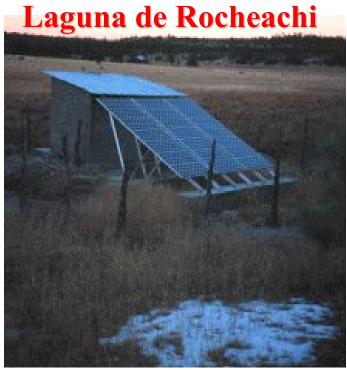
- Evalute options (e.g, gravity feed)
- PV Water Pumping
 - Domestic water supply
 - Livestock water supply
 - Small scale Irrigation
- Wind Water Pumping
 - Domestic water supply
 - Livestock water supply
 - Irrigation



Irrigation

- Conserve Water First (e.g., drip irrigation)
- PV for small scale (< 1 Ha)
- Wind for medium/large scale



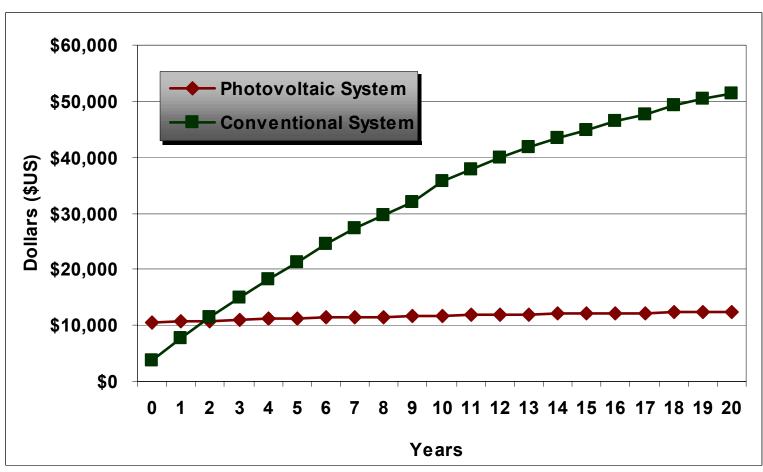


Indigenous WP Projects

Guachochi

Life-Cycle Cost Analysis Case Study-El Jeromín, Chihuahua

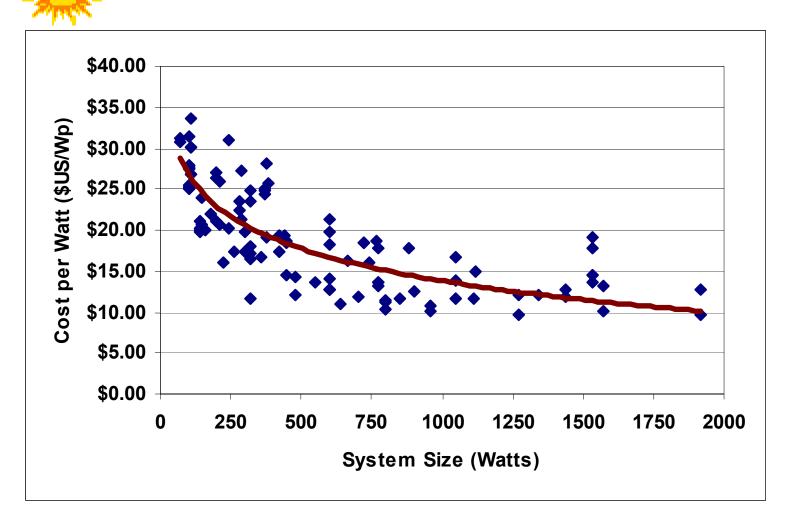
BEFORE



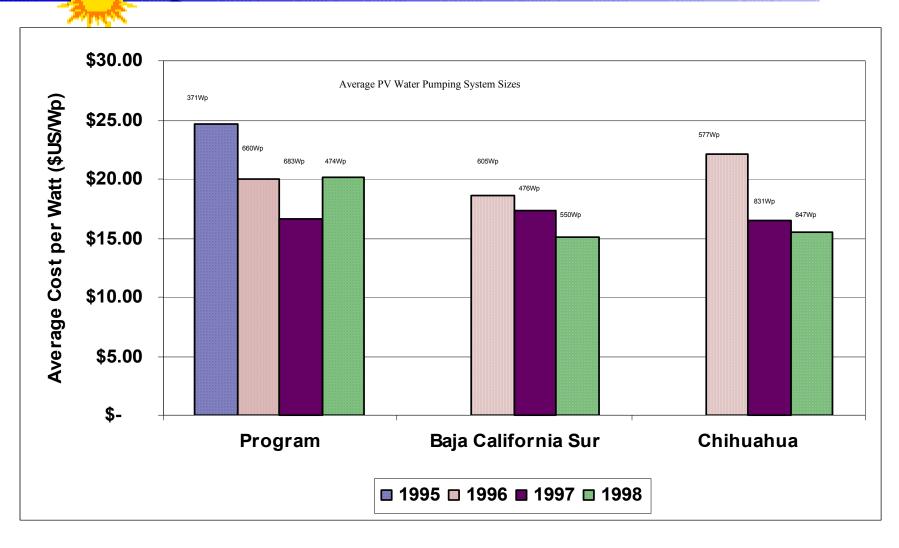
AFTER

- 848 Wp PV system installed in March 1997 with no maintenance since
 - 16 Solarex VRX-53 modules
 - Grundfos SP3A-10 pump
 - SA-1500 controller
- Cattle Ranch with desert vegetation
- 15,000 liters of water per day

Case Study - El Jeromín, Chihuahua *Results**



• After 2.5 years, the PV system represents a lower overall expense to the user


PV Water Pumping

PV Water Pumpers for remote non-electrified sites are in general competitive when under 2 kW in size

Mexico program database shows that prices decrease as markets mature

Reverse Osmosis

- Uses osmotic pressure to remove impurities
- Pros
 - Produces high quality water
 - Removes salts and minerals
 - Removes micro-organisms
- Cons
 - High energy inputs
 - High maintenance (membrane replacements)
 - No residual

Water Purification

- Reverse Osmosis
- Ultraviolet
- Mixed Oxidants
- Distillation

UV

- Uses ultaviolet light to disinfect water
- Pros
 - Eliminates microorganisms without chemical addition
- Cons
 - No residual
 - No salts and minerals removed
 - Should replace UV bulb every year
 - Less effective in the presence of suspended solids

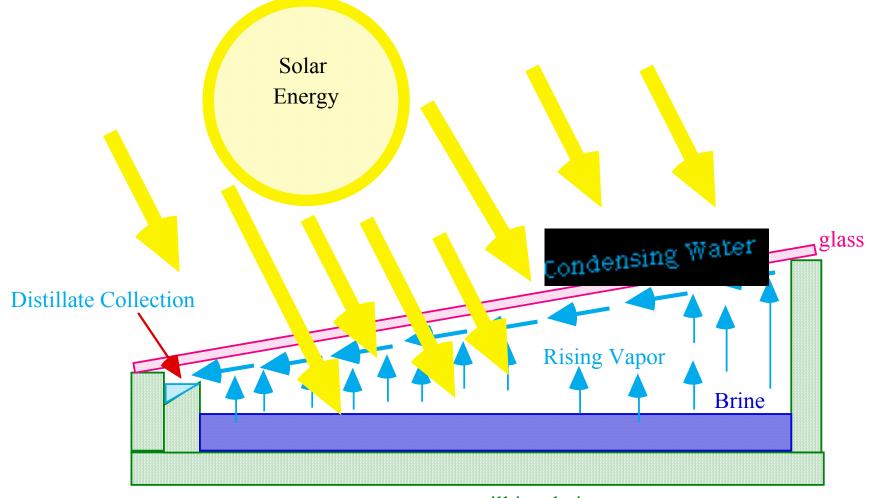
Mixed Oxidants

- Electrodialysis of NaCl to produce oxidants (Ozone, Cl, ClO₂)
- Pros
 - Strong disinfecting solution
 - Provides residual disinfection capacity
- Cons
 - Does not remove dissolved minerals
 - Significant operator interface required
 - High energy inputs
 - Requires pure salt to operate

Distillation

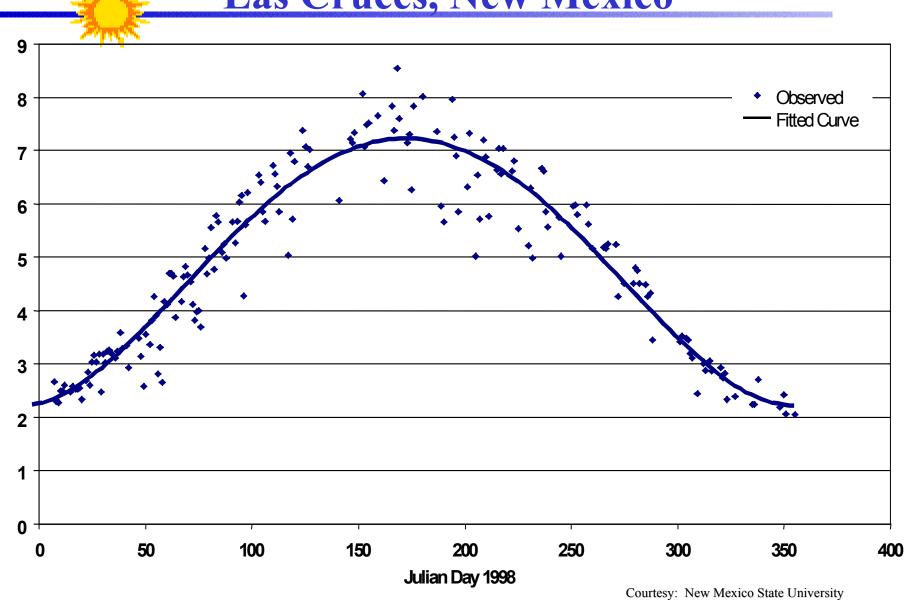
- Distillation is effective in removing
 - Salts/Minerals (e.g., Na, Ca, As, Fl, Fe, Mn)
 - Bacteria (e.g., E. Coli, Cholera, Botulinus)
 - Parasites (e.g., Giardia,

Pros

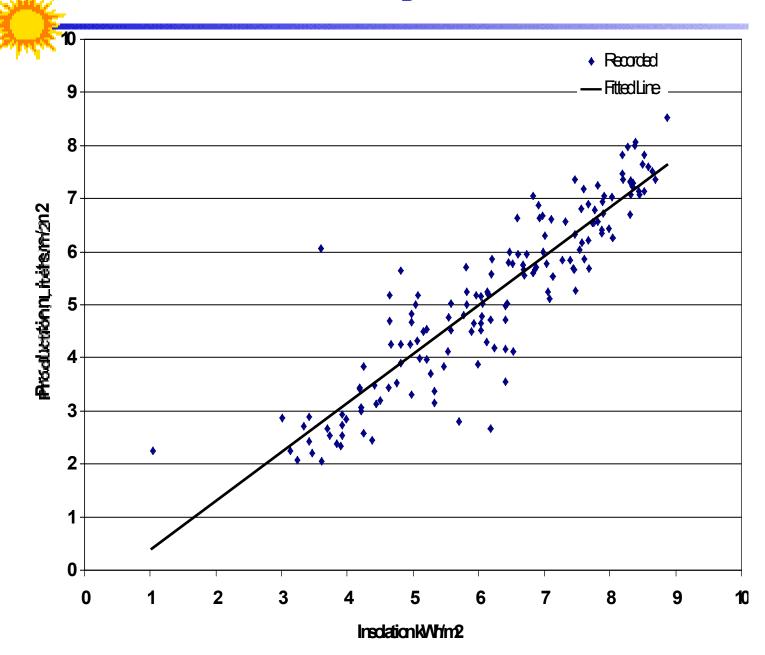

- High Water Quality
- Solar Energy Easily Used
- No Moving Parts
- Long Life
- Simple to Operate
- Simple to Maintain
- Low Life Cycle Cost
- Can be Automated

Cons

- Small Product Volume
- Potential VOC Carryover if no carbon filter used
- No Residual


Solar Still Operation

Natural Evaporation process to produce high quality potable water



still insulation

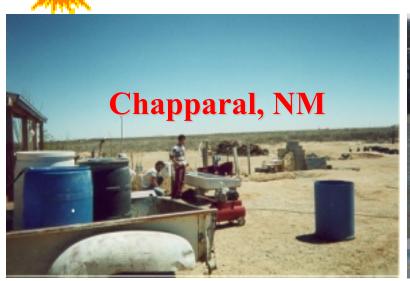
Annual Solar Still Production Las Cruces, New Mexico

Water Production Compared to Solar Insolation

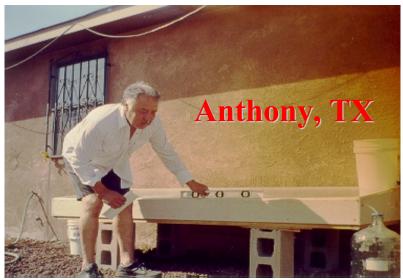
Water Quality Results

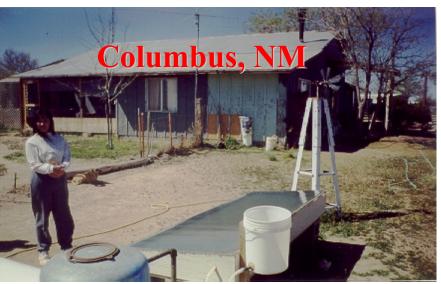
Sandia National Laboratories

SampleType	13%salinity			linity Solar Distilled		
	feedwater	water(13%case)	teedwater	water(16%case)		
Calcium(total)	340	1.5	371	<0.10		
Iron(total)	0.27	<0.05	0.48	<0.06		
Magnesiun(total)	2.1	2.1	< 0.005	<0.005		
Manganes (total)	0.04	<0.02	0.07	<0.02		
Ammoni a s N	<0.1	0.1	<0.1	<0.1		
Chloride	19000	<1.0	25000	2.6		
FixedSolids	32000	<1.0	41000	31		
Nitrateas NO3	34	0.1	26	<0.1		
Nitrateas NO2	0.013	<0.01	0.02	<0.01		
TDS	36000	<1.0	48000	<1.0		
Volatiles & Organic	4200	<1.0	6000	13		

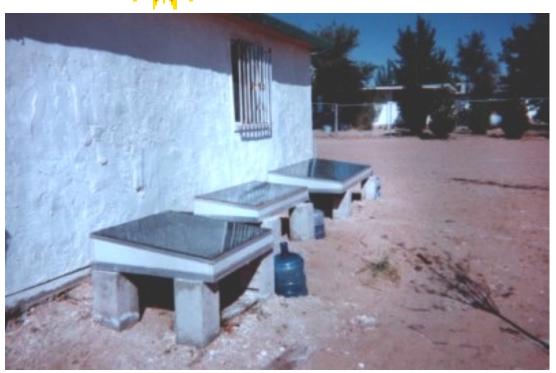

Water Quality Test Results

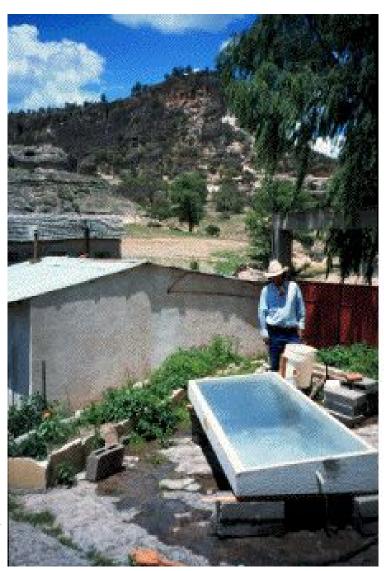
New Mexico State University


Field 8II Ref. No.	Condu điv ty, μS/c m	Hardnes,s mg/LaCO3	Fluorid e, mg/ L	рН
# 2 Cinput	1190	2 6 0	6.2	7.9
# 2 Obutput	4.8	4	0.1	9.2
# 2 2input	1180	2 5 0	8.2	7.4
# 2 2output	1.8	0	0.1 0	9.1
# 2 9input	1 2 0 0	2 5 0	6.0	8.1
# 2 Soutput	5.8	8	0	8.8
# 3 Cinput	2 3 9 0	480	n/a	6.8
#3 wutput	4	4	n/a	9.4


Sample	Volume Tested	Total Organisms per		
	ml	liter		
Supply	50	16,000		
Distillate	1,000	4 (No <i>E. coli</i>)		
E. coli Seed		2,900,000,000		
Distillate	750	11 (No <i>E. coli</i>)		
E. coli Seed		7,500,000,000		
Distillate	1,000	18 (No <i>E. coli</i>)		
Supply	10	24,000		
Distillate	1,000	13 (No <i>E. coli</i>)		
Supply	1	12,000		
Distillate	1,000	6 (No <i>E. coli</i>)		

U.S. Applications in the Southwest




Solar Distillation in Chihuahua, Mexico

Cd. Juárez Orphanage

Indigenous Tarahumara Rural Health Clinic, Norogachi

Anapra Colonia, Cd. Juárez, Mexico

The Valdez family used to buy water at 13 pesos every 3 days (~US\$175/year). They believe that the still water tastes better than store-bought water and now they have more water. Simple still payback is 3.7 years for them.

www.epsea.org

Technology Cost Comparison: Amortization 7% for 10 years

Method(\$	Ini ital Cost	Ini ital Cost	Replacement Parts	Power Cost	Tota Cost
Ê	per month (\$)	per gallon (\$)	per gallon (\$)	per gallon (\$)	Per ga llon (\$)
R.O. 4 stgs .	9. 2	0. 23	0. 10		0. 2
R.O. 4 stgs .	8. 7	0. 16	0. 8 6		0. 20
R.O. 3 stgs .	6. 73	0. 90	0. 9 4		0. 8
Dist -E e c.	5. 6	0. σ 6	0	0. 3	0. 4
Dist -E ect .	16 22	0. 216	0	0. 3	0. <i>5</i>
Dist -E ect .	20 89	0. 7 9	0	0. 3	0. 6
Solar sti I 1.7 m²)	8. 2	0. 10	0		0. 1
Solar sti I (many)	5. 🗸	0. 7 4	0		ο. σ
Bott e d Water	0. 0	0. 00	0	0	0. 25

Clean Water Technology Effectiveness Comparison

Pollutant	Purification		Crossover		Disinfection				
	Carbon Filter	Deionization	RO	Distillation	Boiling	Chlorination	UV*	Ozonation	Mixed Ox
Arsenic									
Bacteria									
Cadmium									
Calcium									
Chlorides									
Chlorine									
Crypto									
Detergents									
Fluoride									
Iron									
Lead									
Mercury									
Nitrate									
Organics									
Pesticides									
Sediement									
Sodium/Salt									
Viruses									
Residual									

Successful Renewables Development

- Work within Cultural
 - Acceptability
 - Useful

Norms

- Use Appropriate Technology
 - Good Quality
 - Reliable
 - Low Maintenance
 - Simple is Best
- Build Local Capacity
 - Training
 - Infrastructure

